Skip to content
Back to all posts

Table of Contents

Npay Payment System - PRD v1.0

Product Requirements for the Npay Payment System, detailing its features, workflows, technical specifications, and integration requirements to ensure a secure, scalable, and user-friendly payment experience.

DEDennis Kibet Rono
14 min read

Npay Payment System - PRD v1.0

Executive Summary

Building upon the established foundation, this enhanced PRD expands the Npay payment system with advanced geofencing capabilities, detailed implementation roadmaps, and comprehensive system architecture guides. The system is designed to scale from 80 million to 1 billion users while maintaining sub-second response times and bank-grade security.

Table of Contents

  1. System Architecture
  2. Geofencing Features & Implementation
  3. Detailed Implementation Guides
  4. Advanced Security Framework
  5. Performance & Scalability Deep Dive
  6. API Specifications
  7. Data Architecture & Management
  8. Monitoring & Observability
  9. Compliance & Regulatory Framework
  10. Implementation Phases & Timeline

Enhanced System Architecture

Core Architecture Principles

Microservices Design Patterns

  • Domain-Driven Design (DDD): Each service owns its domain and data
  • Event Sourcing: Complete audit trail with event replay capabilities
  • CQRS (Command Query Responsibility Segregation): Separate read/write models for optimal performance
  • Saga Pattern: Distributed transaction management across services

Service Mesh Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   User Service  │    │ Payment Service │    │Geofence Service │
│                 │    │                 │    │                 │
│ - Authentication│    │ - Transactions  │    │ - Location      │
│ - Profile Mgmt  │    │ - Settlements   │    │ - Boundaries    │
│ - KYC/AML       │    │ - Fraud Check   │    │ - Notifications │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         └───────────────────────┼───────────────────────┘

                    ┌─────────────────┐
                    │  Service Mesh   │
                    │   (Istio/Envoy) │
                    │                 │
                    │ - Load Balance  │
                    │ - Circuit Break │
                    │ - Rate Limiting │
                    │ - Observability │
                    └─────────────────┘

Enhanced Service Breakdown

Core Payment Services

  1. Account Management Service

  2. Primary account operations

  3. Savings account management

  4. Account linking and verification

  5. Balance management and reconciliation

  6. Transaction Processing Service

  7. Real-time payment processing

  8. International transfers

  9. Batch processing for settlements

  10. Transaction state management

  11. Fraud Detection Service

  12. ML-based anomaly detection

  13. Real-time risk scoring

  14. Behavioral analysis

  15. Geofencing-based fraud prevention

  16. Analytics Service

  17. Spending pattern analysis

  18. Financial insights generation

  19. Merchant categorization

  20. Predictive analytics

  21. Overdraft Service

  22. Credit scoring algorithms

  23. Risk assessment models

  24. Automated approval workflows

  25. Repayment tracking


Geofencing Features & Implementation

Core Geofencing Capabilities

1. Location-Based Security

  • Trusted Location Management: Users can define trusted locations (home, work, frequent merchants)
  • Anomaly Detection: Transactions outside normal geographic patterns trigger additional verification
  • Travel Mode: Temporary expansion of trusted zones for travel periods
  • Emergency Lockdown: Automatic account freeze for transactions in high-risk areas

2. Merchant & ATM Geofencing

  • Proximity-Based Offers: Location-triggered promotions and cashback offers
  • ATM Locator: Real-time ATM availability and fee information
  • Merchant Verification: Location-based merchant authenticity checks
  • Dynamic Fee Adjustment: Location-based fee structures

3. Regulatory Compliance Geofencing

  • Jurisdiction Enforcement: Automatic compliance with local financial regulations
  • Cross-Border Transaction Controls: Enhanced verification for international transfers
  • Sanctions Screening: Real-time location-based sanctions compliance
  • Tax Reporting: Automatic tax jurisdiction determination

Geofencing Technical Architecture

Location Data Pipeline

Mobile App → Location Service → Geofence Engine → Risk Engine → Decision Engine
     ↓              ↓               ↓              ↓              ↓
GPS/Network → Coordinate → Boundary Check → Risk Score → Allow/Block/Verify

Geofencing Service Components

  1. Location Ingestion Service
# Pseudo-implementation structure
class LocationIngestionService:
    - validate_location_data()
    - normalize_coordinates()
    - store_location_history()
    - trigger_geofence_checks()
  1. Geofence Management Service
class GeofenceManager:
    - create_geofence(user_id, coordinates, radius, type)
    - update_geofence_boundaries()
    - check_point_in_polygon()
    - manage_dynamic_geofences()
  1. Risk Assessment Engine
class LocationRiskEngine:
    - calculate_location_risk_score()
    - analyze_travel_patterns()
    - detect_location_anomalies()
    - generate_risk_recommendations()

Geofencing Implementation Guide

Phase 1: Basic Location Services (Weeks 1-4)

  1. Location Data Collection

  2. Implement GPS and network-based location services

  3. Create location permission management

  4. Build location data validation and sanitization

  5. Establish location data retention policies

  6. Basic Geofence Engine

  7. Implement point-in-polygon algorithms

  8. Create circular and polygonal geofence support

  9. Build geofence storage and retrieval systems

  10. Implement real-time geofence checking

Phase 2: Security Integration (Weeks 5-8)

  1. Fraud Prevention Integration

  2. Connect geofencing to fraud detection systems

  3. Implement location-based risk scoring

  4. Create anomaly detection algorithms

  5. Build automated response mechanisms

  6. User Experience Features

  7. Develop trusted location management UI

  8. Create travel mode functionality

  9. Implement location-based notifications

  10. Build location history and analytics

Phase 3: Advanced Features (Weeks 9-12)

  1. Merchant & Offer Integration

  2. Implement proximity-based offer engine

  3. Create merchant location verification

  4. Build dynamic pricing based on location

  5. Develop location-based loyalty programs

  6. Regulatory Compliance

  7. Implement jurisdiction detection

  8. Create compliance rule engine

  9. Build sanctions screening integration

  10. Develop tax reporting automation

Geofencing Data Models

Location Data Structure

{
  "user_id": "uuid",
  "location": {
    "latitude": 40.7128,
    "longitude": -74.006,
    "accuracy": 10,
    "timestamp": "2025-01-15T10:30:00Z",
    "source": "gps|network|manual"
  },
  "context": {
    "transaction_id": "uuid",
    "merchant_id": "uuid",
    "device_id": "uuid"
  }
}

Geofence Configuration

{
  "geofence_id": "uuid",
  "user_id": "uuid",
  "name": "Home",
  "type": "trusted|restricted|merchant|regulatory",
  "geometry": {
    "type": "circle|polygon",
    "center": { "lat": 40.7128, "lng": -74.006 },
    "radius": 500,
    "vertices": [{ "lat": 40.7128, "lng": -74.006 }]
  },
  "rules": {
    "transaction_limit": 10000,
    "requires_verification": false,
    "notification_enabled": true
  },
  "active": true,
  "created_at": "2025-01-15T10:30:00Z"
}

Detailed Implementation Guides

Database Implementation Guide

PostgreSQL Sharding Strategy

  1. Horizontal Sharding by User ID
-- Shard function
CREATE OR REPLACE FUNCTION get_shard_id(user_id UUID)
RETURNS INTEGER AS $$
BEGIN
    RETURN (hashtext(user_id::text) % 16) + 1;
END;
$$ LANGUAGE plpgsql;
 
-- Shard routing table
CREATE TABLE shard_routing (
    shard_id INTEGER PRIMARY KEY,
    database_host VARCHAR(255),
    database_name VARCHAR(255),
    status VARCHAR(20) DEFAULT 'active'
);
  1. Time-Based Partitioning for Transactions
-- Parent table
CREATE TABLE transactions (
    transaction_id UUID PRIMARY KEY,
    user_id UUID NOT NULL,
    amount DECIMAL(15,2),
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
) PARTITION BY RANGE (created_at);
 
-- Monthly partitions
CREATE TABLE transactions_2025_01 PARTITION OF transactions
FOR VALUES FROM ('2025-01-01') TO ('2025-02-01');

Redis Caching Implementation

  1. Multi-Layer Cache Strategy
class CacheManager:
    def __init__(self):
        self.l1_cache = Redis(host='redis-l1', decode_responses=True)  # Hot data
        self.l2_cache = Redis(host='redis-l2', decode_responses=True)  # Warm data
        self.l3_cache = Redis(host='redis-l3', decode_responses=True)  # Cold data
 
    async def get_user_balance(self, user_id: str):
        # L1 Cache (TTL: 30 seconds)
        balance = await self.l1_cache.get(f"balance:{user_id}")
        if balance:
            return float(balance)
 
        # L2 Cache (TTL: 5 minutes)
        balance = await self.l2_cache.get(f"balance:{user_id}")
        if balance:
            await self.l1_cache.setex(f"balance:{user_id}", 30, balance)
            return float(balance)
 
        # Database fallback
        balance = await self.get_balance_from_db(user_id)
        await self.l1_cache.setex(f"balance:{user_id}", 30, balance)
        await self.l2_cache.setex(f"balance:{user_id}", 300, balance)
        return balance

Microservices Communication Guide

Event-Driven Architecture with Kafka

  1. Event Schema Registry
{
  "namespace": "com.npay.events",
  "type": "record",
  "name": "TransactionCreated",
  "fields": [
    { "name": "transaction_id", "type": "string" },
    { "name": "user_id", "type": "string" },
    { "name": "amount", "type": "double" },
    { "name": "currency", "type": "string" },
    { "name": "merchant_id", "type": ["null", "string"] },
    {
      "name": "location",
      "type": {
        "type": "record",
        "name": "Location",
        "fields": [
          { "name": "latitude", "type": "double" },
          { "name": "longitude", "type": "double" }
        ]
      }
    },
    { "name": "timestamp", "type": "long" }
  ]
}
  1. Saga Pattern Implementation
class PaymentSaga:
    def __init__(self):
        self.steps = [
            self.validate_account,
            self.check_fraud,
            self.verify_geofence,
            self.process_payment,
            self.update_balance,
            self.send_notification
        ]
 
    async def execute(self, transaction_data):
        saga_id = str(uuid.uuid4())
        compensation_stack = []
 
        try:
            for step in self.steps:
                result = await step(transaction_data)
                compensation_stack.append(result.compensation)
 
            return {"status": "success", "saga_id": saga_id}
        except Exception as e:
            await self.compensate(compensation_stack)
            return {"status": "failed", "error": str(e)}

API Gateway Implementation

Rate Limiting & Security

# Kong Gateway Configuration
services:
  - name: payment-service
    url: http://payment-service:8000
    plugins:
      - name: rate-limiting
        config:
          minute: 1000
          hour: 10000
          policy: redis
      - name: jwt
        config:
          secret_is_base64: false
      - name: request-validator
        config:
          body_schema: |
            {
              "type": "object",
              "properties": {
                "amount": {"type": "number", "minimum": 0.01},
                "currency": {"type": "string", "pattern": "^[A-Z]{3}$"}
              },
              "required": ["amount", "currency"]
            }

Advanced Security Framework

Zero-Trust Architecture Implementation

Identity & Access Management

  1. Multi-Factor Authentication (MFA)

  2. TOTP (Time-based One-Time Password)

  3. SMS/Email verification

  4. Biometric authentication

  5. Hardware security keys (FIDO2/WebAuthn)

  6. Adaptive Authentication

class AdaptiveAuthEngine:
    def calculate_risk_score(self, user_context):
        factors = {
            'device_trust': self.check_device_fingerprint(user_context.device),
            'location_risk': self.geofence_service.get_location_risk(user_context.location),
            'behavioral_score': self.analyze_user_behavior(user_context.user_id),
            'transaction_pattern': self.check_transaction_patterns(user_context)
        }
 
        risk_score = sum(factors.values()) / len(factors)
 
        if risk_score > 0.8:
            return AuthAction.BLOCK
        elif risk_score > 0.6:
            return AuthAction.STEP_UP_AUTH
        else:
            return AuthAction.ALLOW

Encryption & Tokenization

Field-Level Encryption

class FieldEncryption:
    def __init__(self, key_management_service):
        self.kms = key_management_service
 
    def encrypt_pii(self, data: dict) -> dict:
        encrypted_data = data.copy()
        sensitive_fields = ['account_number', 'ssn', 'phone', 'email']
 
        for field in sensitive_fields:
            if field in data:
                key = self.kms.get_encryption_key(f"field_{field}")
                encrypted_data[field] = self.encrypt_field(data[field], key)
 
        return encrypted_data

Tokenization Service

class TokenizationService:
    def tokenize_card(self, card_number: str) -> str:
        # Generate format-preserving token
        token = self.generate_fpf_token(card_number)
 
        # Store mapping in secure vault
        self.vault.store_mapping(token, card_number)
 
        return token
 
    def detokenize(self, token: str) -> str:
        return self.vault.retrieve_original(token)

Performance & Scalability Deep Dive

Load Testing & Performance Benchmarks

Target Performance Metrics

  • Response Time: P95 < 200ms, P99 < 500ms
  • Throughput: 15,000 TPS sustained, 25,000 TPS burst
  • Availability: 99.99% uptime (52.6 minutes downtime/year)
  • Data Consistency: Strong consistency for financial data

Auto-Scaling Configuration

# Kubernetes HPA Configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: payment-service-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: payment-service
  minReplicas: 10
  maxReplicas: 100
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 70
    - type: Resource
      resource:
        name: memory
        target:
          type: Utilization
          averageUtilization: 80
    - type: Pods
      pods:
        metric:
          name: requests_per_second
        target:
          type: AverageValue
          averageValue: '1000'

Database Performance Optimization

Connection Pooling Strategy

# SQLAlchemy Configuration
DATABASE_CONFIG = {
    'pool_size': 20,
    'max_overflow': 30,
    'pool_pre_ping': True,
    'pool_recycle': 3600,
    'echo': False,
    'connect_args': {
        'connect_timeout': 10,
        'command_timeout': 30,
        'server_settings': {
            'application_name': 'npay_payment_service',
            'jit': 'off'  # Disable JIT for consistent performance
        }
    }
}

Query Optimization Guidelines

  1. Index Strategy
-- Composite indexes for common query patterns
CREATE INDEX CONCURRENTLY idx_transactions_user_date
ON transactions (user_id, created_at DESC)
WHERE status = 'completed';
 
-- Partial indexes for specific conditions
CREATE INDEX CONCURRENTLY idx_transactions_pending
ON transactions (created_at)
WHERE status = 'pending';
  1. Read Replicas Configuration
class DatabaseRouter:
    def db_for_read(self, model, **hints):
        if model._meta.app_label == 'analytics':
            return 'analytics_replica'
        return 'read_replica'
 
    def db_for_write(self, model, **hints):
        return 'primary'

API Specifications

RESTful API Design

Payment Processing API

openapi: 3.0.0
info:
  title: Npay Payment API
  version: 2.0.0
  description: Comprehensive payment processing API with geofencing
 
paths:
  /api/v2/payments:
    post:
      summary: Process payment
      requestBody:
        required: true
        content:
          application/json:
            schema:
              type: object
              properties:
                amount:
                  type: number
                  minimum: 0.01
                  maximum: 1000000
                currency:
                  type: string
                  pattern: '^[A-Z]{3}$'
                recipient:
                  type: object
                  properties:
                    account_id:
                      type: string
                      format: uuid
                    routing_number:
                      type: string
                location:
                  type: object
                  properties:
                    latitude:
                      type: number
                      minimum: -90
                      maximum: 90
                    longitude:
                      type: number
                      minimum: -180
                      maximum: 180
                    accuracy:
                      type: number
                      minimum: 0
              required: [amount, currency, recipient]
      responses:
        '200':
          description: Payment processed successfully
          content:
            application/json:
              schema:
                type: object
                properties:
                  transaction_id:
                    type: string
                    format: uuid
                  status:
                    type: string
                    enum: [completed, pending, failed]
                  geofence_status:
                    type: string
                    enum: [trusted, verified, blocked]

Geofencing API

/api/v2/geofences:
  post:
    summary: Create geofence
    requestBody:
      required: true
      content:
        application/json:
          schema:
            type: object
            properties:
              name:
                type: string
                maxLength: 100
              type:
                type: string
                enum: [trusted, restricted, merchant]
              geometry:
                type: object
                properties:
                  type:
                    type: string
                    enum: [circle, polygon]
                  center:
                    type: object
                    properties:
                      latitude:
                        type: number
                      longitude:
                        type: number
                  radius:
                    type: number
                    minimum: 10
                    maximum: 50000
              rules:
                type: object
                properties:
                  transaction_limit:
                    type: number
                  requires_verification:
                    type: boolean
            required: [name, type, geometry]

GraphQL API for Analytics

type Query {
  userAnalytics(userId: ID!, timeRange: TimeRange!): UserAnalytics
  transactionHistory(
    userId: ID!
    filters: TransactionFilters
    pagination: PaginationInput
  ): TransactionConnection
  geofenceAnalytics(userId: ID!): GeofenceAnalytics
}
 
type UserAnalytics {
  spendingByCategory: [CategorySpending!]!
  monthlyTrends: [MonthlySpending!]!
  locationInsights: LocationInsights
  riskScore: Float
}
 
type LocationInsights {
  frequentLocations: [Location!]!
  travelPatterns: [TravelPattern!]!
  anomalousTransactions: [Transaction!]!
}
 
type GeofenceAnalytics {
  trustedZoneUsage: [ZoneUsage!]!
  securityEvents: [SecurityEvent!]!
  recommendations: [GeofenceRecommendation!]!
}

Data Architecture & Management

Data Lake Architecture

Data Pipeline Flow

Transactional Data → Kafka → Stream Processing → Data Lake → Analytics

                              Real-time ML → Fraud Detection

                              Batch Processing → Reports & Insights

Data Retention Policies

DATA_RETENTION_POLICIES = {
    'transaction_data': {
        'hot_storage': '90_days',      # SSD storage for recent data
        'warm_storage': '2_years',     # Standard storage
        'cold_storage': '7_years',     # Archive storage
        'deletion': '10_years'         # Regulatory requirement
    },
    'location_data': {
        'hot_storage': '30_days',
        'warm_storage': '1_year',
        'cold_storage': '3_years',
        'deletion': '5_years'
    },
    'audit_logs': {
        'hot_storage': '1_year',
        'warm_storage': '5_years',
        'cold_storage': '10_years',
        'deletion': 'never'            # Permanent retention
    }
}

Data Privacy & GDPR Compliance

Data Anonymization Pipeline

class DataAnonymizer:
    def anonymize_user_data(self, user_id: str):
        # Replace PII with anonymized tokens
        anonymized_data = {
            'user_id': self.generate_anonymous_id(user_id),
            'location_data': self.anonymize_locations(user_id),
            'transaction_patterns': self.anonymize_transactions(user_id)
        }
 
        # Maintain referential integrity
        self.update_cross_references(user_id, anonymized_data['user_id'])
 
        return anonymized_data
 
    def right_to_be_forgotten(self, user_id: str):
        # Complete data deletion across all systems
        deletion_tasks = [
            self.delete_transactional_data(user_id),
            self.delete_location_history(user_id),
            self.delete_ml_model_data(user_id),
            self.delete_backup_data(user_id)
        ]
 
        return asyncio.gather(*deletion_tasks)

Monitoring & Observability

Comprehensive Monitoring Stack

Metrics Collection

# Prometheus Configuration
global:
  scrape_interval: 15s
  evaluation_interval: 15s
 
rule_files:
  - 'payment_rules.yml'
  - 'geofence_rules.yml'
 
scrape_configs:
  - job_name: 'payment-service'
    static_configs:
      - targets: ['payment-service:8080']
    metrics_path: /metrics
    scrape_interval: 5s
 
  - job_name: 'geofence-service'
    static_configs:
      - targets: ['geofence-service:8080']
    metrics_path: /metrics
    scrape_interval: 10s

Custom Metrics

from prometheus_client import Counter, Histogram, Gauge
 
# Business Metrics
TRANSACTION_COUNTER = Counter(
    'npay_transactions_total',
    'Total number of transactions',
    ['status', 'payment_method', 'geofence_status']
)
 
TRANSACTION_AMOUNT = Histogram(
    'npay_transaction_amount',
    'Transaction amounts',
    buckets=[1, 10, 50, 100, 500, 1000, 5000, 10000]
)
 
GEOFENCE_VIOLATIONS = Counter(
    'npay_geofence_violations_total',
    'Geofence violations detected',
    ['violation_type', 'user_risk_level']
)
 
# System Metrics
ACTIVE_USERS = Gauge(
    'npay_active_users',
    'Number of active users'
)
 
DATABASE_CONNECTIONS = Gauge(
    'npay_db_connections_active',
    'Active database connections',
    ['database', 'shard']
)

Alerting Rules

# payment_rules.yml
groups:
  - name: payment_alerts
    rules:
      - alert: HighTransactionFailureRate
        expr: rate(npay_transactions_total{status="failed"}[5m]) > 0.05
        for: 2m
        labels:
          severity: critical
        annotations:
          summary: 'High transaction failure rate detected'
          description: 'Transaction failure rate is {{ $value }} over the last 5 minutes'
 
      - alert: GeofenceViolationSpike
        expr: rate(npay_geofence_violations_total[5m]) > 10
        for: 1m
        labels:
          severity: warning
        annotations:
          summary: 'Unusual geofence violation activity'
          description: 'Geofence violations: {{ $value }} per second'
 
      - alert: DatabaseConnectionExhaustion
        expr: npay_db_connections_active / npay_db_connections_max > 0.9
        for: 30s
        labels:
          severity: critical
        annotations:
          summary: 'Database connection pool nearly exhausted'

Distributed Tracing

OpenTelemetry Implementation

from opentelemetry import trace
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
 
# Configure tracing
trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
 
jaeger_exporter = JaegerExporter(
    agent_host_name="jaeger-agent",
    agent_port=6831,
)
 
span_processor = BatchSpanProcessor(jaeger_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
 
# Usage in payment processing
async def process_payment(payment_request):
    with tracer.start_as_current_span("process_payment") as span:
        span.set_attribute("payment.amount", payment_request.amount)
        span.set_attribute("payment.currency", payment_request.currency)
 
        # Validate account
        with tracer.start_as_current_span("validate_account"):
            account_valid = await validate_account(payment_request.account_id)
            span.set_attribute("account.valid", account_valid)
 
        # Check geofence
        with tracer.start_as_current_span("check_geofence"):
            geofence_result = await check_geofence(
                payment_request.user_id,
                payment_request.location
            )
            span.set_attribute("geofence.status", geofence_result.status)
 
        # Process transaction
        with tracer.start_as_current_span("execute_transaction"):
            result = await execute_transaction(payment_request)
            span.set_attribute("transaction.id", result.transaction_id)
            span.set_attribute("transaction.status", result.status)
 
        return result

Compliance & Regulatory Framework

Multi-Jurisdiction Compliance

Regulatory Mapping

REGULATORY_REQUIREMENTS = {
    'US': {
        'frameworks': ['PCI_DSS', 'SOX', 'GLBA', 'FFIEC'],
        'data_residency': 'required',
        'encryption_standards': ['FIPS_140_2'],
        'audit_frequency': 'annual',
        'breach_notification': '72_hours'
    },
    'EU': {
        'frameworks': ['GDPR', 'PSD2', 'EBA_Guidelines'],
        'data_residency': 'required',
        'encryption_standards': ['Common_Criteria'],
        'audit_frequency': 'annual',
        'breach_notification': '72_hours'
    },
    'UK': {
        'frameworks': ['FCA_Rules', 'UK_GDPR', 'PCI_DSS'],
        'data_residency': 'preferred',
        'encryption_standards': ['CESG_Guidelines'],
        'audit_frequency': 'annual',
        'breach_notification': '72_hours'
    }
}

Automated Compliance Monitoring

class ComplianceMonitor:
    def __init__(self):
        self.compliance_rules = self.load_compliance_rules()
        self.audit_logger = AuditLogger()
 
    async def monitor_transaction(self, transaction):
        jurisdiction = self.determine_jurisdiction(transaction.location)
        rules = self.compliance_rules[jurisdiction]
 
        compliance_checks = [
            self.check_transaction_limits(transaction, rules),
            self.verify_kyc_status(transaction.user_id, rules),
            self.screen_sanctions(transaction, rules),
            self.validate_data_residency(transaction, rules)
        ]
 
        results = await asyncio.gather(*compliance_checks)
 
        if not all(results):
            await self.handle_compliance_violation(transaction, results)
 
        await self.audit_logger.log_compliance_check(transaction, results)

AML/KYC Implementation

Risk-Based Customer Due Diligence

class KYCRiskAssessment:
    def calculate_customer_risk(self, customer_data):
        risk_factors = {
            'geographic_risk': self.assess_geographic_risk(customer_data.location),
            'transaction_risk': self.assess_transaction_patterns(customer_data.transactions),
            'identity_risk': self.assess_identity_verification(customer_data.identity),
            'behavioral_risk': self.assess_behavioral_patterns(customer_data.behavior)
        }
 
        weighted_score = sum(
            factor * weight for factor, weight in zip(
                risk_factors.values(),
                [0.3, 0.3, 0.25, 0.15]  # Risk factor weights
            )
        )
 
        if weighted_score > 0.8:
            return RiskLevel.HIGH
        elif weighted_score > 0.5:
            return RiskLevel.MEDIUM
        else:
            return RiskLevel.LOW
 
    def determine_kyc_requirements(self, risk_level):
        requirements = {
            RiskLevel.LOW: ['basic_identity', 'address_verification'],
            RiskLevel.MEDIUM: ['enhanced_identity', 'income_verification', 'source_of_funds'],
            RiskLevel.HIGH: ['comprehensive_kyc', 'ongoing_monitoring', 'senior_approval']
        }
        return requirements[risk_level]

Implementation Phases & Timeline

Phase 1: Foundation (Months 1-3)

Core Infrastructure Setup

  • Week 1-2: Kubernetes cluster setup and CI/CD pipeline
  • Week 3-4: Database sharding implementation
  • Week 5-6: Basic microservices architecture
  • Week 7-8: API gateway and service mesh
  • Week 9-10: Security framework implementation
  • Week 11-12: Basic monitoring and logging

Deliverables:

  • Scalable infrastructure foundation
  • Core payment processing capability
  • Basic security and monitoring
  • Development and staging environments

Phase 2: Core Features (Months 4-6)

Payment System Implementation

  • Week 13-14: Account management service
  • Week 15-16: Transaction processing engine
  • Week 17-18: Fraud detection system
  • Week 19-20: Analytics service foundation
  • Week 21-22: Basic mobile and web applications
  • Week 23-24: Integration testing and optimization

Deliverables:

  • Complete payment processing system
  • Basic fraud detection
  • User-facing applications
  • Core analytics capabilities

Phase 3: Geofencing & Advanced Features (Months 7-9)

Geofencing Implementation

  • Week 25-26: Location services and data pipeline
  • Week 27-28: Geofence engine and risk assessment
  • Week 29-30: Security integration and fraud prevention
  • Week 31-32: User experience features
  • Week 33-34: Merchant and offer integration
  • Week 35-36: Regulatory compliance features

Deliverables:

  • Complete geofencing system
  • Location-based security features
  • Enhanced fraud prevention
  • Regulatory compliance automation

Phase 4: Scale & Optimization (Months 10-12)

Performance & Scalability

  • Week 37-38: Performance optimization and load testing
  • Week 39-40: Advanced caching and database optimization
  • Week 41-42: Auto-scaling and disaster recovery
  • Week 43-44: Advanced analytics and ML models
  • Week 45-46: Overdraft services implementation
  • Week 47-48: Final testing and production deployment

Deliverables:

  • Production-ready system at scale
  • Advanced ML-powered features
  • Complete disaster recovery
  • Comprehensive monitoring and alerting

Success Metrics & KPIs

Technical Performance

  • Transaction processing: 15,000 TPS sustained
  • Response time: P95 < 200ms
  • System availability: 99.99%
  • Data consistency: 100% for financial transactions

Business Metrics

  • User acquisition: 80M+ users by end of Phase 4
  • Transaction volume: $10B+ monthly by end of Phase 4
  • Fraud rate: < 0.1% of transaction volume
  • Customer satisfaction: > 4.5/5.0 rating

Security & Compliance

  • Zero critical security incidents
  • 100% compliance with applicable regulations
  • < 72 hours for security patch deployment
  • Complete audit trail for all transactions

This PRD provides a comprehensive roadmap for implementing the Npay payment system with advanced geofencing capabilities, detailed implementation guides, and a clear path to scale from 80 million to 1 billion users while maintaining the highest standards of security, performance, and regulatory compliance.

Share this article

© copyright 2025

    Accessibility StatementPrivacy PolicyTerms of Service