Npay Payment System - PRD v1.0
Product Requirements for the Npay Payment System, detailing its features, workflows, technical specifications, and integration requirements to ensure a secure, scalable, and user-friendly payment experience.
Npay Payment System - PRD v1.0
Executive Summary
Building upon the established foundation, this enhanced PRD expands the Npay payment system with advanced geofencing capabilities, detailed implementation roadmaps, and comprehensive system architecture guides. The system is designed to scale from 80 million to 1 billion users while maintaining sub-second response times and bank-grade security.
Table of Contents
- System Architecture
- Geofencing Features & Implementation
- Detailed Implementation Guides
- Advanced Security Framework
- Performance & Scalability Deep Dive
- API Specifications
- Data Architecture & Management
- Monitoring & Observability
- Compliance & Regulatory Framework
- Implementation Phases & Timeline
Enhanced System Architecture
Core Architecture Principles
Microservices Design Patterns
- Domain-Driven Design (DDD): Each service owns its domain and data
- Event Sourcing: Complete audit trail with event replay capabilities
- CQRS (Command Query Responsibility Segregation): Separate read/write models for optimal performance
- Saga Pattern: Distributed transaction management across services
Service Mesh Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ User Service │ │ Payment Service │ │Geofence Service │
│ │ │ │ │ │
│ - Authentication│ │ - Transactions │ │ - Location │
│ - Profile Mgmt │ │ - Settlements │ │ - Boundaries │
│ - KYC/AML │ │ - Fraud Check │ │ - Notifications │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└───────────────────────┼───────────────────────┘
│
┌─────────────────┐
│ Service Mesh │
│ (Istio/Envoy) │
│ │
│ - Load Balance │
│ - Circuit Break │
│ - Rate Limiting │
│ - Observability │
└─────────────────┘
Enhanced Service Breakdown
Core Payment Services
-
Account Management Service
-
Primary account operations
-
Savings account management
-
Account linking and verification
-
Balance management and reconciliation
-
Transaction Processing Service
-
Real-time payment processing
-
International transfers
-
Batch processing for settlements
-
Transaction state management
-
Fraud Detection Service
-
ML-based anomaly detection
-
Real-time risk scoring
-
Behavioral analysis
-
Geofencing-based fraud prevention
-
Analytics Service
-
Spending pattern analysis
-
Financial insights generation
-
Merchant categorization
-
Predictive analytics
-
Overdraft Service
-
Credit scoring algorithms
-
Risk assessment models
-
Automated approval workflows
-
Repayment tracking
Geofencing Features & Implementation
Core Geofencing Capabilities
1. Location-Based Security
- Trusted Location Management: Users can define trusted locations (home, work, frequent merchants)
- Anomaly Detection: Transactions outside normal geographic patterns trigger additional verification
- Travel Mode: Temporary expansion of trusted zones for travel periods
- Emergency Lockdown: Automatic account freeze for transactions in high-risk areas
2. Merchant & ATM Geofencing
- Proximity-Based Offers: Location-triggered promotions and cashback offers
- ATM Locator: Real-time ATM availability and fee information
- Merchant Verification: Location-based merchant authenticity checks
- Dynamic Fee Adjustment: Location-based fee structures
3. Regulatory Compliance Geofencing
- Jurisdiction Enforcement: Automatic compliance with local financial regulations
- Cross-Border Transaction Controls: Enhanced verification for international transfers
- Sanctions Screening: Real-time location-based sanctions compliance
- Tax Reporting: Automatic tax jurisdiction determination
Geofencing Technical Architecture
Location Data Pipeline
Mobile App → Location Service → Geofence Engine → Risk Engine → Decision Engine
↓ ↓ ↓ ↓ ↓
GPS/Network → Coordinate → Boundary Check → Risk Score → Allow/Block/Verify
Geofencing Service Components
- Location Ingestion Service
# Pseudo-implementation structure
class LocationIngestionService:
- validate_location_data()
- normalize_coordinates()
- store_location_history()
- trigger_geofence_checks()
- Geofence Management Service
class GeofenceManager:
- create_geofence(user_id, coordinates, radius, type)
- update_geofence_boundaries()
- check_point_in_polygon()
- manage_dynamic_geofences()
- Risk Assessment Engine
class LocationRiskEngine:
- calculate_location_risk_score()
- analyze_travel_patterns()
- detect_location_anomalies()
- generate_risk_recommendations()
Geofencing Implementation Guide
Phase 1: Basic Location Services (Weeks 1-4)
-
Location Data Collection
-
Implement GPS and network-based location services
-
Create location permission management
-
Build location data validation and sanitization
-
Establish location data retention policies
-
Basic Geofence Engine
-
Implement point-in-polygon algorithms
-
Create circular and polygonal geofence support
-
Build geofence storage and retrieval systems
-
Implement real-time geofence checking
Phase 2: Security Integration (Weeks 5-8)
-
Fraud Prevention Integration
-
Connect geofencing to fraud detection systems
-
Implement location-based risk scoring
-
Create anomaly detection algorithms
-
Build automated response mechanisms
-
User Experience Features
-
Develop trusted location management UI
-
Create travel mode functionality
-
Implement location-based notifications
-
Build location history and analytics
Phase 3: Advanced Features (Weeks 9-12)
-
Merchant & Offer Integration
-
Implement proximity-based offer engine
-
Create merchant location verification
-
Build dynamic pricing based on location
-
Develop location-based loyalty programs
-
Regulatory Compliance
-
Implement jurisdiction detection
-
Create compliance rule engine
-
Build sanctions screening integration
-
Develop tax reporting automation
Geofencing Data Models
Location Data Structure
{
"user_id": "uuid",
"location": {
"latitude": 40.7128,
"longitude": -74.006,
"accuracy": 10,
"timestamp": "2025-01-15T10:30:00Z",
"source": "gps|network|manual"
},
"context": {
"transaction_id": "uuid",
"merchant_id": "uuid",
"device_id": "uuid"
}
}
Geofence Configuration
{
"geofence_id": "uuid",
"user_id": "uuid",
"name": "Home",
"type": "trusted|restricted|merchant|regulatory",
"geometry": {
"type": "circle|polygon",
"center": { "lat": 40.7128, "lng": -74.006 },
"radius": 500,
"vertices": [{ "lat": 40.7128, "lng": -74.006 }]
},
"rules": {
"transaction_limit": 10000,
"requires_verification": false,
"notification_enabled": true
},
"active": true,
"created_at": "2025-01-15T10:30:00Z"
}
Detailed Implementation Guides
Database Implementation Guide
PostgreSQL Sharding Strategy
- Horizontal Sharding by User ID
-- Shard function
CREATE OR REPLACE FUNCTION get_shard_id(user_id UUID)
RETURNS INTEGER AS $$
BEGIN
RETURN (hashtext(user_id::text) % 16) + 1;
END;
$$ LANGUAGE plpgsql;
-- Shard routing table
CREATE TABLE shard_routing (
shard_id INTEGER PRIMARY KEY,
database_host VARCHAR(255),
database_name VARCHAR(255),
status VARCHAR(20) DEFAULT 'active'
);
- Time-Based Partitioning for Transactions
-- Parent table
CREATE TABLE transactions (
transaction_id UUID PRIMARY KEY,
user_id UUID NOT NULL,
amount DECIMAL(15,2),
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
) PARTITION BY RANGE (created_at);
-- Monthly partitions
CREATE TABLE transactions_2025_01 PARTITION OF transactions
FOR VALUES FROM ('2025-01-01') TO ('2025-02-01');
Redis Caching Implementation
- Multi-Layer Cache Strategy
class CacheManager:
def __init__(self):
self.l1_cache = Redis(host='redis-l1', decode_responses=True) # Hot data
self.l2_cache = Redis(host='redis-l2', decode_responses=True) # Warm data
self.l3_cache = Redis(host='redis-l3', decode_responses=True) # Cold data
async def get_user_balance(self, user_id: str):
# L1 Cache (TTL: 30 seconds)
balance = await self.l1_cache.get(f"balance:{user_id}")
if balance:
return float(balance)
# L2 Cache (TTL: 5 minutes)
balance = await self.l2_cache.get(f"balance:{user_id}")
if balance:
await self.l1_cache.setex(f"balance:{user_id}", 30, balance)
return float(balance)
# Database fallback
balance = await self.get_balance_from_db(user_id)
await self.l1_cache.setex(f"balance:{user_id}", 30, balance)
await self.l2_cache.setex(f"balance:{user_id}", 300, balance)
return balance
Microservices Communication Guide
Event-Driven Architecture with Kafka
- Event Schema Registry
{
"namespace": "com.npay.events",
"type": "record",
"name": "TransactionCreated",
"fields": [
{ "name": "transaction_id", "type": "string" },
{ "name": "user_id", "type": "string" },
{ "name": "amount", "type": "double" },
{ "name": "currency", "type": "string" },
{ "name": "merchant_id", "type": ["null", "string"] },
{
"name": "location",
"type": {
"type": "record",
"name": "Location",
"fields": [
{ "name": "latitude", "type": "double" },
{ "name": "longitude", "type": "double" }
]
}
},
{ "name": "timestamp", "type": "long" }
]
}
- Saga Pattern Implementation
class PaymentSaga:
def __init__(self):
self.steps = [
self.validate_account,
self.check_fraud,
self.verify_geofence,
self.process_payment,
self.update_balance,
self.send_notification
]
async def execute(self, transaction_data):
saga_id = str(uuid.uuid4())
compensation_stack = []
try:
for step in self.steps:
result = await step(transaction_data)
compensation_stack.append(result.compensation)
return {"status": "success", "saga_id": saga_id}
except Exception as e:
await self.compensate(compensation_stack)
return {"status": "failed", "error": str(e)}
API Gateway Implementation
Rate Limiting & Security
# Kong Gateway Configuration
services:
- name: payment-service
url: http://payment-service:8000
plugins:
- name: rate-limiting
config:
minute: 1000
hour: 10000
policy: redis
- name: jwt
config:
secret_is_base64: false
- name: request-validator
config:
body_schema: |
{
"type": "object",
"properties": {
"amount": {"type": "number", "minimum": 0.01},
"currency": {"type": "string", "pattern": "^[A-Z]{3}$"}
},
"required": ["amount", "currency"]
}
Advanced Security Framework
Zero-Trust Architecture Implementation
Identity & Access Management
-
Multi-Factor Authentication (MFA)
-
TOTP (Time-based One-Time Password)
-
SMS/Email verification
-
Biometric authentication
-
Hardware security keys (FIDO2/WebAuthn)
-
Adaptive Authentication
class AdaptiveAuthEngine:
def calculate_risk_score(self, user_context):
factors = {
'device_trust': self.check_device_fingerprint(user_context.device),
'location_risk': self.geofence_service.get_location_risk(user_context.location),
'behavioral_score': self.analyze_user_behavior(user_context.user_id),
'transaction_pattern': self.check_transaction_patterns(user_context)
}
risk_score = sum(factors.values()) / len(factors)
if risk_score > 0.8:
return AuthAction.BLOCK
elif risk_score > 0.6:
return AuthAction.STEP_UP_AUTH
else:
return AuthAction.ALLOW
Encryption & Tokenization
Field-Level Encryption
class FieldEncryption:
def __init__(self, key_management_service):
self.kms = key_management_service
def encrypt_pii(self, data: dict) -> dict:
encrypted_data = data.copy()
sensitive_fields = ['account_number', 'ssn', 'phone', 'email']
for field in sensitive_fields:
if field in data:
key = self.kms.get_encryption_key(f"field_{field}")
encrypted_data[field] = self.encrypt_field(data[field], key)
return encrypted_data
Tokenization Service
class TokenizationService:
def tokenize_card(self, card_number: str) -> str:
# Generate format-preserving token
token = self.generate_fpf_token(card_number)
# Store mapping in secure vault
self.vault.store_mapping(token, card_number)
return token
def detokenize(self, token: str) -> str:
return self.vault.retrieve_original(token)
Performance & Scalability Deep Dive
Load Testing & Performance Benchmarks
Target Performance Metrics
- Response Time: P95 < 200ms, P99 < 500ms
- Throughput: 15,000 TPS sustained, 25,000 TPS burst
- Availability: 99.99% uptime (52.6 minutes downtime/year)
- Data Consistency: Strong consistency for financial data
Auto-Scaling Configuration
# Kubernetes HPA Configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: payment-service-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: payment-service
minReplicas: 10
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: requests_per_second
target:
type: AverageValue
averageValue: '1000'
Database Performance Optimization
Connection Pooling Strategy
# SQLAlchemy Configuration
DATABASE_CONFIG = {
'pool_size': 20,
'max_overflow': 30,
'pool_pre_ping': True,
'pool_recycle': 3600,
'echo': False,
'connect_args': {
'connect_timeout': 10,
'command_timeout': 30,
'server_settings': {
'application_name': 'npay_payment_service',
'jit': 'off' # Disable JIT for consistent performance
}
}
}
Query Optimization Guidelines
- Index Strategy
-- Composite indexes for common query patterns
CREATE INDEX CONCURRENTLY idx_transactions_user_date
ON transactions (user_id, created_at DESC)
WHERE status = 'completed';
-- Partial indexes for specific conditions
CREATE INDEX CONCURRENTLY idx_transactions_pending
ON transactions (created_at)
WHERE status = 'pending';
- Read Replicas Configuration
class DatabaseRouter:
def db_for_read(self, model, **hints):
if model._meta.app_label == 'analytics':
return 'analytics_replica'
return 'read_replica'
def db_for_write(self, model, **hints):
return 'primary'
API Specifications
RESTful API Design
Payment Processing API
openapi: 3.0.0
info:
title: Npay Payment API
version: 2.0.0
description: Comprehensive payment processing API with geofencing
paths:
/api/v2/payments:
post:
summary: Process payment
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
amount:
type: number
minimum: 0.01
maximum: 1000000
currency:
type: string
pattern: '^[A-Z]{3}$'
recipient:
type: object
properties:
account_id:
type: string
format: uuid
routing_number:
type: string
location:
type: object
properties:
latitude:
type: number
minimum: -90
maximum: 90
longitude:
type: number
minimum: -180
maximum: 180
accuracy:
type: number
minimum: 0
required: [amount, currency, recipient]
responses:
'200':
description: Payment processed successfully
content:
application/json:
schema:
type: object
properties:
transaction_id:
type: string
format: uuid
status:
type: string
enum: [completed, pending, failed]
geofence_status:
type: string
enum: [trusted, verified, blocked]
Geofencing API
/api/v2/geofences:
post:
summary: Create geofence
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
name:
type: string
maxLength: 100
type:
type: string
enum: [trusted, restricted, merchant]
geometry:
type: object
properties:
type:
type: string
enum: [circle, polygon]
center:
type: object
properties:
latitude:
type: number
longitude:
type: number
radius:
type: number
minimum: 10
maximum: 50000
rules:
type: object
properties:
transaction_limit:
type: number
requires_verification:
type: boolean
required: [name, type, geometry]
GraphQL API for Analytics
type Query {
userAnalytics(userId: ID!, timeRange: TimeRange!): UserAnalytics
transactionHistory(
userId: ID!
filters: TransactionFilters
pagination: PaginationInput
): TransactionConnection
geofenceAnalytics(userId: ID!): GeofenceAnalytics
}
type UserAnalytics {
spendingByCategory: [CategorySpending!]!
monthlyTrends: [MonthlySpending!]!
locationInsights: LocationInsights
riskScore: Float
}
type LocationInsights {
frequentLocations: [Location!]!
travelPatterns: [TravelPattern!]!
anomalousTransactions: [Transaction!]!
}
type GeofenceAnalytics {
trustedZoneUsage: [ZoneUsage!]!
securityEvents: [SecurityEvent!]!
recommendations: [GeofenceRecommendation!]!
}
Data Architecture & Management
Data Lake Architecture
Data Pipeline Flow
Transactional Data → Kafka → Stream Processing → Data Lake → Analytics
↓
Real-time ML → Fraud Detection
↓
Batch Processing → Reports & Insights
Data Retention Policies
DATA_RETENTION_POLICIES = {
'transaction_data': {
'hot_storage': '90_days', # SSD storage for recent data
'warm_storage': '2_years', # Standard storage
'cold_storage': '7_years', # Archive storage
'deletion': '10_years' # Regulatory requirement
},
'location_data': {
'hot_storage': '30_days',
'warm_storage': '1_year',
'cold_storage': '3_years',
'deletion': '5_years'
},
'audit_logs': {
'hot_storage': '1_year',
'warm_storage': '5_years',
'cold_storage': '10_years',
'deletion': 'never' # Permanent retention
}
}
Data Privacy & GDPR Compliance
Data Anonymization Pipeline
class DataAnonymizer:
def anonymize_user_data(self, user_id: str):
# Replace PII with anonymized tokens
anonymized_data = {
'user_id': self.generate_anonymous_id(user_id),
'location_data': self.anonymize_locations(user_id),
'transaction_patterns': self.anonymize_transactions(user_id)
}
# Maintain referential integrity
self.update_cross_references(user_id, anonymized_data['user_id'])
return anonymized_data
def right_to_be_forgotten(self, user_id: str):
# Complete data deletion across all systems
deletion_tasks = [
self.delete_transactional_data(user_id),
self.delete_location_history(user_id),
self.delete_ml_model_data(user_id),
self.delete_backup_data(user_id)
]
return asyncio.gather(*deletion_tasks)
Monitoring & Observability
Comprehensive Monitoring Stack
Metrics Collection
# Prometheus Configuration
global:
scrape_interval: 15s
evaluation_interval: 15s
rule_files:
- 'payment_rules.yml'
- 'geofence_rules.yml'
scrape_configs:
- job_name: 'payment-service'
static_configs:
- targets: ['payment-service:8080']
metrics_path: /metrics
scrape_interval: 5s
- job_name: 'geofence-service'
static_configs:
- targets: ['geofence-service:8080']
metrics_path: /metrics
scrape_interval: 10s
Custom Metrics
from prometheus_client import Counter, Histogram, Gauge
# Business Metrics
TRANSACTION_COUNTER = Counter(
'npay_transactions_total',
'Total number of transactions',
['status', 'payment_method', 'geofence_status']
)
TRANSACTION_AMOUNT = Histogram(
'npay_transaction_amount',
'Transaction amounts',
buckets=[1, 10, 50, 100, 500, 1000, 5000, 10000]
)
GEOFENCE_VIOLATIONS = Counter(
'npay_geofence_violations_total',
'Geofence violations detected',
['violation_type', 'user_risk_level']
)
# System Metrics
ACTIVE_USERS = Gauge(
'npay_active_users',
'Number of active users'
)
DATABASE_CONNECTIONS = Gauge(
'npay_db_connections_active',
'Active database connections',
['database', 'shard']
)
Alerting Rules
# payment_rules.yml
groups:
- name: payment_alerts
rules:
- alert: HighTransactionFailureRate
expr: rate(npay_transactions_total{status="failed"}[5m]) > 0.05
for: 2m
labels:
severity: critical
annotations:
summary: 'High transaction failure rate detected'
description: 'Transaction failure rate is {{ $value }} over the last 5 minutes'
- alert: GeofenceViolationSpike
expr: rate(npay_geofence_violations_total[5m]) > 10
for: 1m
labels:
severity: warning
annotations:
summary: 'Unusual geofence violation activity'
description: 'Geofence violations: {{ $value }} per second'
- alert: DatabaseConnectionExhaustion
expr: npay_db_connections_active / npay_db_connections_max > 0.9
for: 30s
labels:
severity: critical
annotations:
summary: 'Database connection pool nearly exhausted'
Distributed Tracing
OpenTelemetry Implementation
from opentelemetry import trace
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
# Configure tracing
trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
jaeger_exporter = JaegerExporter(
agent_host_name="jaeger-agent",
agent_port=6831,
)
span_processor = BatchSpanProcessor(jaeger_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
# Usage in payment processing
async def process_payment(payment_request):
with tracer.start_as_current_span("process_payment") as span:
span.set_attribute("payment.amount", payment_request.amount)
span.set_attribute("payment.currency", payment_request.currency)
# Validate account
with tracer.start_as_current_span("validate_account"):
account_valid = await validate_account(payment_request.account_id)
span.set_attribute("account.valid", account_valid)
# Check geofence
with tracer.start_as_current_span("check_geofence"):
geofence_result = await check_geofence(
payment_request.user_id,
payment_request.location
)
span.set_attribute("geofence.status", geofence_result.status)
# Process transaction
with tracer.start_as_current_span("execute_transaction"):
result = await execute_transaction(payment_request)
span.set_attribute("transaction.id", result.transaction_id)
span.set_attribute("transaction.status", result.status)
return result
Compliance & Regulatory Framework
Multi-Jurisdiction Compliance
Regulatory Mapping
REGULATORY_REQUIREMENTS = {
'US': {
'frameworks': ['PCI_DSS', 'SOX', 'GLBA', 'FFIEC'],
'data_residency': 'required',
'encryption_standards': ['FIPS_140_2'],
'audit_frequency': 'annual',
'breach_notification': '72_hours'
},
'EU': {
'frameworks': ['GDPR', 'PSD2', 'EBA_Guidelines'],
'data_residency': 'required',
'encryption_standards': ['Common_Criteria'],
'audit_frequency': 'annual',
'breach_notification': '72_hours'
},
'UK': {
'frameworks': ['FCA_Rules', 'UK_GDPR', 'PCI_DSS'],
'data_residency': 'preferred',
'encryption_standards': ['CESG_Guidelines'],
'audit_frequency': 'annual',
'breach_notification': '72_hours'
}
}
Automated Compliance Monitoring
class ComplianceMonitor:
def __init__(self):
self.compliance_rules = self.load_compliance_rules()
self.audit_logger = AuditLogger()
async def monitor_transaction(self, transaction):
jurisdiction = self.determine_jurisdiction(transaction.location)
rules = self.compliance_rules[jurisdiction]
compliance_checks = [
self.check_transaction_limits(transaction, rules),
self.verify_kyc_status(transaction.user_id, rules),
self.screen_sanctions(transaction, rules),
self.validate_data_residency(transaction, rules)
]
results = await asyncio.gather(*compliance_checks)
if not all(results):
await self.handle_compliance_violation(transaction, results)
await self.audit_logger.log_compliance_check(transaction, results)
AML/KYC Implementation
Risk-Based Customer Due Diligence
class KYCRiskAssessment:
def calculate_customer_risk(self, customer_data):
risk_factors = {
'geographic_risk': self.assess_geographic_risk(customer_data.location),
'transaction_risk': self.assess_transaction_patterns(customer_data.transactions),
'identity_risk': self.assess_identity_verification(customer_data.identity),
'behavioral_risk': self.assess_behavioral_patterns(customer_data.behavior)
}
weighted_score = sum(
factor * weight for factor, weight in zip(
risk_factors.values(),
[0.3, 0.3, 0.25, 0.15] # Risk factor weights
)
)
if weighted_score > 0.8:
return RiskLevel.HIGH
elif weighted_score > 0.5:
return RiskLevel.MEDIUM
else:
return RiskLevel.LOW
def determine_kyc_requirements(self, risk_level):
requirements = {
RiskLevel.LOW: ['basic_identity', 'address_verification'],
RiskLevel.MEDIUM: ['enhanced_identity', 'income_verification', 'source_of_funds'],
RiskLevel.HIGH: ['comprehensive_kyc', 'ongoing_monitoring', 'senior_approval']
}
return requirements[risk_level]
Implementation Phases & Timeline
Phase 1: Foundation (Months 1-3)
Core Infrastructure Setup
- Week 1-2: Kubernetes cluster setup and CI/CD pipeline
- Week 3-4: Database sharding implementation
- Week 5-6: Basic microservices architecture
- Week 7-8: API gateway and service mesh
- Week 9-10: Security framework implementation
- Week 11-12: Basic monitoring and logging
Deliverables:
- Scalable infrastructure foundation
- Core payment processing capability
- Basic security and monitoring
- Development and staging environments
Phase 2: Core Features (Months 4-6)
Payment System Implementation
- Week 13-14: Account management service
- Week 15-16: Transaction processing engine
- Week 17-18: Fraud detection system
- Week 19-20: Analytics service foundation
- Week 21-22: Basic mobile and web applications
- Week 23-24: Integration testing and optimization
Deliverables:
- Complete payment processing system
- Basic fraud detection
- User-facing applications
- Core analytics capabilities
Phase 3: Geofencing & Advanced Features (Months 7-9)
Geofencing Implementation
- Week 25-26: Location services and data pipeline
- Week 27-28: Geofence engine and risk assessment
- Week 29-30: Security integration and fraud prevention
- Week 31-32: User experience features
- Week 33-34: Merchant and offer integration
- Week 35-36: Regulatory compliance features
Deliverables:
- Complete geofencing system
- Location-based security features
- Enhanced fraud prevention
- Regulatory compliance automation
Phase 4: Scale & Optimization (Months 10-12)
Performance & Scalability
- Week 37-38: Performance optimization and load testing
- Week 39-40: Advanced caching and database optimization
- Week 41-42: Auto-scaling and disaster recovery
- Week 43-44: Advanced analytics and ML models
- Week 45-46: Overdraft services implementation
- Week 47-48: Final testing and production deployment
Deliverables:
- Production-ready system at scale
- Advanced ML-powered features
- Complete disaster recovery
- Comprehensive monitoring and alerting
Success Metrics & KPIs
Technical Performance
- Transaction processing: 15,000 TPS sustained
- Response time: P95 < 200ms
- System availability: 99.99%
- Data consistency: 100% for financial transactions
Business Metrics
- User acquisition: 80M+ users by end of Phase 4
- Transaction volume: $10B+ monthly by end of Phase 4
- Fraud rate: < 0.1% of transaction volume
- Customer satisfaction: > 4.5/5.0 rating
Security & Compliance
- Zero critical security incidents
- 100% compliance with applicable regulations
- < 72 hours for security patch deployment
- Complete audit trail for all transactions
This PRD provides a comprehensive roadmap for implementing the Npay payment system with advanced geofencing capabilities, detailed implementation guides, and a clear path to scale from 80 million to 1 billion users while maintaining the highest standards of security, performance, and regulatory compliance.